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A. MIELE 

Abstract. An analytical approach to the gradient method is presented within the framework 

of the Bolza problem of the calculus of variations. The first variation is minimized subject 

to  the linearized differential constraint and an isoperimetric constraint on the control 

variation. Since the resulting Euler equations a re  linear, the differential system describing 

the optimum corrections is linear. The properties of this system are studied, and the 

solutions are related to the stepsize a. Next ,  the optimization of a is performed by minimizing 

the sum of the first variation and the second variation; an analytical expression is derived 

fox: the optimum value of a. Thus, the present method is a hybrid, in that the shape of the 

system of variations is obtained from first-order considerations while the scale factor for 

the variations is obtained from second-order considerations . Two numerical examples 

illustrating the convergence properties of the algorithm are supplied. 
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1. Introduction 

Over the past decade, considerable work has been done on the application of 

gradient methods to  control theory. In this area of research, the work of Bryson 

(Ref. 1) and Kelley (Ref. 2) has become renowned. Basically, the authors of Refs. 1-2 

minimized a linearized functional subjected to a linearized differential constraint and 

a quadratic constraint on the system of control variations. A common characteristic 

of the Bryson-Kelley approach is that, in the derivation of the gradient algorithm, a 

preliminary integration of the linearized constraint is performed in order to obtain 

the state change 6x(t) in terms of the control change 6u(t). This integration is 

performed prior to optimizing the control change. 

Although the above approach is correct, this preliminary integration is not 

necessary. In the opinion of this author, a much simpler derivation of the gradient 

algorithm is possible if one avoids integrating the state in terms of the control and 

views the minimal problem as a variational problem of the Bolza type with an added 

isoperimetric constraint of the quadratic type on the control variation. 

After the system of variations is obtained from first-order considerations, 

second-order considerations are employed in order to determine the scale factor 

for the variations. Thus, the method presented here is a hybrid, in that it combines 

first-order considerations with second- order considerations. 
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2 .  Statement of the Problem 
-I~- 

The purpose of this paper is to find the minimum of the functional 

subject to the differential constraint 

li: - cp(x,u,t) = 0 

and the end conditions 

t. = given x =given 
1 i 

t f =given x f =f ree  

In the above equations, f and g a r e  scalar functions; the vectors x,u,cp are respectively 

defined as  follows: 

9 u =  (5)  

and 
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The time t is the independent variable; the state variable x and the control variable u are 

the dependent variables ; the dot denotes the derivative with respect to the time. The 

subscript i refers to the initial point, and the subscript f refers to the final point. 

The basic idea is to construct corrections 6x(t), 6u(t) leading from nominal functions 

x(t), u(t) to varied functions Z(t), G(t) such that 

Therefore, by an iterative procedure (that i s ,  through successive decreases in the value of 

the functional), it is hoped that the minimum of I is approached to any desired degree of 

accuracy. 
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3 . Variational Formulation -- 

Suppose that nominal functions - x(t), u(t) satisfying the differential constraint (2) and 

3 the initial conditions (3) are available. 

the differential constraint (2) and the initial conditions ( 3 ) .  The varied functions are related 

to the nominal function as follows: 

Let 2(t) , G(t) denote varied functions satisfying 

2(t) = x(t) + 6x(t) , G(t) = u(t) + 6u(t) (8 ) 

where 6x(t) and 6u(t) denote the perturbations of x and u about the nominal values. Note that, 

at the endpoints, 

t .  = given 6x. = o  (9) 1 1 

f 6x =free (10) f 
t = given 
f 

To first order, the values of the varied functional and the nominal functional a r e  

related by 

where the first variation 61 is given.by 

c 

61 = J:(fT6x + f T 6u) dt + (gx T 6xIf 
U 

(12) 
L i 

Here, f denotes the gradient of the scalar function f with respect to the vector x, fu the 

gradient of the scalar function f with respect to the vector u, and e;, the gradient of the 

X 

These functions can be found by selecting u(t) arbitrarily and integrating Eq. (2) forward 
subject to the initial conditions (3). 

3 
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scalar function g with respect to the vector x.  These gradients are defined by 

f =  
X 

and 

, f =  
U 

Also to first order, Eq. (2) can be approximated by 

6k- cp T 6x - cp T 6 u = O  
X U 

AAR-60 

(13) 

Here, cp denotes the n x n matrix whose - jth column is the gradient of the function 

respect t o  the vector x and cp denotes the m x n matrix whose - jth column is the gradient of 

the function cp' with respect to the vector u. These matrices are defined as 

with 
X 

U 

%'/ax2 . . . . . .  arpn/& 
. . . . . . . . . . . . . . . . . . . . . . .  
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and 

2 2  2 
d / a U 2  acp /au . . . . . .  acpn/au 

Tu = . . . . . . . . . . . . . . . . . . . . . .  

To first order, the greatest decrease in the value of the functional (11) is achieved if 

the first variation (12) is minimized. Here, we limit our analysis to those variations which 

satisfy the isoperimetric constraint 

e 

L i 

where K is a prescribed positive constant. 
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4. Derivation of the Algorithm 
-I- ---- 

We seek to determine the variations 6x(t), 6u(t) which minimize the functional (12) 

subject t o  the boundary conditions (9)-(lo), the differential constraint (15), and the iso- 

perimetric constraint (18). This variational problem of the Bolza type (see, for instance, 

Chapter 2 of Ref. 3) can be recast as that of minimizing the functional 

1 

subject to (9)-(lo), (15), (18). In the above expression, the fundamental function F is 

given by 

where the vector X denotes a variable Lagrange multiplier 

and the scalar 1/2 r, denotes a constant Lagrange multiplier. If one introduces the 

Hamiltonian 

T H = f - X  cp 

and observes that 

H = f  - Q X  , H = f  - C O X  x x x  u u u  
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the fundamental function (20) can be rewritten as 

4.1. Euler Equations. The optimum variations 6x(t)y 6u(t) must satisfy the Euler 

equations 

O = F  (25) (d/dt)Ffil; = F6x 6U 

where F6i F6x , F 6u respectively denote the gradients of the fundamental function F 

with respect to the vectors 6 i y  6x, 6u. These gradients are given by 

After observing that 

9 = H + 6u/a F6x = Hx F6u u F6k = 1 

we see that Eqs. (25) yield the relations 

which must be solved in combination with Eq. (15) and the boundary conditions (9)-(10). The 

control change 6u is proportional to the gradient of the Hamiltonian with the respect to  the 

control u; this is why the procedure is termed the gradient method. The quantity a is a 
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scale factor for the control variation and, hence, is called the stepsize of the gradient 

method. 

4.2. Transversality Condition. The boundary conditions are partly of the fixed 

endpoint type and partly of the variable endpoint type. The latter must be derived from 

the transversality condition 

which must be satisfied for every system of variations consistent with the boundary 

conditions (9)-(10), Use of the boundary conditions and Eq. (27-1) allows one to rewrite 

(29) in the form 

This equation is satisfied for every variation 6( 6x ) providing f 

t =given , (A = O  (3 1) f 

4.3. Summary of the Equations. The optimum corrections 6x(t), 6u(t) and the 

multiplier distribution h(t) are governed by Eqs . (15) and (28), which must be solved 

subject to  the boundary conditions (9) and (31). Note that this differential system is linear. 

Because of the nature of the boundary conditions, the equations are uncoupled and need 

not be solved simultaneously. Specifically, it is convenient to integrate Eq. (28-1) 

baclcward subject to the final conditions (31) in order to  obtain the multiplier distribution 

A@). Once X(t) is known, the control change 6u(t) is supplied by Eq. (28-2), providing 
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the stepsize cx is specified. In turn, the state change 6x(t) is obtained by integrating 

Eq. (15) forward subject to the initial conditions (9). 

The solution can be made independent of the stepsize a if one introduces the auxiliary 

variables 

where A denotes an n-vector proportional to the state change and B denotes an m-vector 

proportional to the control change. With these variables, Eqs . (15) and (28) become 

T T A=cPxA+q U B , i = H  X , B = - H  U 

and must be solved subject to the boundary conditions 

t .  =given , A. = O  
1 1 

(33) 

(34) 

t f = given , (X +gx)f = O  (35) 

Once the functions A(t) and B(t) are known, the corrections 6x(t) and 6u(t) are determined 

through Eqs . (32). Of course, this requires the specification of the stepsize a (see 

Section 5). 

4.4. - Relation between the Lsoperimetric Constant and the Stepsize. If Eqs . (18) and 

(28-2) are combined, the following relation is obtained: 

K =a2(iHTH u u  dt 

ti 

(36) 
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Since the integrand is known along a given nominal curve, Eq. (36) supplies a one-to-one 

correspondence between the isoperimetric constant K and the stepsize a. Therefore, one 

need not prescribe K and can reason directly on a, as in the considerations to  follow. 

T 
4.5. Descent Property. If Eq. (15) is premultiplied by X and integrated over the 

interval (t. t ), one obtains the relation 
1' f 

0 = sf IT(&? - cp T 6x - cpu T 6u)dt 
X 

ti 

which, upon integration by parts, can be rewritten as 

0 = (x T f f  6x). - f[(i + cp 7 ~ ) ~ 6 x  + (cp h)T6u]dt 
1 X U 

ti 

Upon adding (12) and (38) and accounting for Eqs . (9) and (23), we see that the first 

variation becomes 

61 = s'f HT 6udt 
U 

ti 

+ F ( H  - ?;)T 6xdt + [ ( A +  g ) T 6x3, 
X X 

(37) 

(39) 

W e  note that the second and third terms in Eq. (39) vanish because of the Euler equation 

(28-1) and the final condition (31-2). Therefore, Eq. (39) reduces to 

f T  
t 

61 = 1 H 6udt 
U 

ti 

which, in the light of (28-2), can be rewritten as 

t 
61 = -as HTHUdt 

ti 
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and, because of (36), is equivalent to 

Either of Eqs . (41) or  (42) shows that the first variation is negative for a > 0 .  Therefore, 

if  a is sufficiently small, the functional (1) is bound to decrease. This descent property 

is the most important aspect of the gradient method. 
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5. I Optimum Stepsize - 

The next step is to  determine the optimum value of the parameter a. Clearly, this 

cannot be done by reasoning in terms of the first variation alone, since 61 is linear in a. 

This being the case, we expand the functional (1) to  second-order terms as follows: 

1 2  ,., 
I 2 1 + 6 1 + - 6 1  2 

2 
where 61 is the first variation and 6 I the second variation. 

The first variation (12) can be taken into the alternate form (41), that is, 

61 = -Pa 

where P denotes the performance index 

(43 ) 

(44) 

P = p H T H  u u  dt (45 1 
ti 

Note that P = 0 for the exact variational solution (H = 0) and P > 0 for any other curve 

(H # 0). In view of (33-3), Eq. (45) can be rewritten as 

U 

U 

P = StfBTBdt 

ti 

The second variation of the functional (1) is given by 
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and, in view of the definitions (32), can be rewritten as 

2 2 
6 I = Q a  

where 

f T  

ti 

t 
Q = J  (A f xx A+2ATf xu B+BTf uu B)dt+(ATg x x f  A) 

Because of (44) and (48), the varied functional (43) becomes 

1 2  - 
I = I -  pa+-@ 2 

The stepsize a which minimizes ‘i: must satisfy the relation 

dy/da = 0 

whose explicit form is the following: 

- P + Q a = O  

(49) 

and admits the solution 

The significance of the quantities P and Q is clear from Eqs (44) and (48): they are the 

values taken by the first variation and the second variation for a = 1. 

Remark 5.1. In practice, Eq. (53) must be replaced by 

a = pua 0 = ou(P/Q) (54) 
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where 

respectively denote a direction factor and a scaling factor. The direction factor o is 

determined so  that the first variation 

2 
61 = -aP = - pu(P /Q)  

is negative; this is precisely the case if one chooses 

p =  sign Q (57) 

with the implication that 

If the stepsize a is chosen according to (58) and if the scaling factor u is in  the range 

0 2 1-1 

second order. The correct value of 

when expansions are not used, that is, even when the functional (1) is calculated exactly 

for both the nominal control u(t) and the varied control Ei(t); for this purpose, see Section 7. 

1, the integral (1) can be shown to decrease not only to first order but also to 

must be selected s o  that Ineq. (7) is satisfied even 
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6. - Alternate Determination -- of the Optimum - Stepsize 

Alternatively, the optimum stepsize a can be determined by reasoning on the augmented 

functional 

J = I + ~  t f T  X ( 2 - v ) d t  

ti 

which, because of (1) and (22), is equivalent to 

tf 

ti 

J = s (H + ATk)dt + k(x)l, 

To second order, the expansion of this functional is given by 

1 2  
2 

J"g J + 6 j  +- 6 J 

(59) 

2 
where 6J is the first variation and 6 J the second variation. 

The first variation of (60) can be written as 

(62) 
tf T T T  T 

ti 

SJ = (H 6x+H 6u+X &)dt +(g 6 ~ ) ~  
X U X 

and, after an integration by parts is performed and Eqs. (9) are accounted for, becomes 

6 J = J  f T  H k d t + S  tf (H - A )  * T  6xdt+[(X+g)T6x]f t 

U X X 

ti ti 

which is identical with (39). Therefore, one obtains 

6J = 61 
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with the implication that 

6J = - Pa 

where 

t 
P = s  f T  B Bdt 

t 
i 

Clearly, the first variation of the augmented functional is negative for a > 0. Therefore, 

if 01 is sufficiently small, the augmented functional (60) is bound to decrease. 

The second variation of (60) is given by 

t , 

and, in the light of Eqs. (32), is equivalent t o  

2 2 6 J = R a  

where 

R = S f ( A T H  xx A+2ATH xu B+BTH uu B)dt+(ATg x x f  A) 

ti 

Because of Eqs . (65) and (68), the varied augmented functional (61) reduces to  
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which is formally identical with (SO), the only difference being that Q is replaced by R. 

With this understanding, the uncorrected optimum stepsize is given by Eq. (53) with Q 

replaced by R; the stepsize corrected to  ensure the negativeness of the first variation as 

well as the negativeness of the total variation is given by Eq. (58) with Q replaced by R, 

that is ,  by 

a = U(P/R) sign R = VP/ I R }  

I Remark 6.1. E the functional (1) is linear in x and u, that is, if 

f = o  , f = o  , f = o  , g&=o  xx xu uu 

the relation 

Q = O  (73 1 

ensues from (49). Under these conditions, Eq. (52) no longer supplies an optimum value 

for a. Clearly, the algorithm of Section 5 fails, and the optimum value of a must be 

determined with the algorithm described in Section 6. 
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7.  Summary of the Algorithm -- 

In the light of the previous discussion, the complete algorithm can be summarized 

-- 

as follows: 

(a) Choose a nominal control u(t), obtain a consistent state x(t) by integrating Eq. (2) 

forward subject to the initial conditions (3), and compute the functional I using Eq. (1). 

(b) Determine the multiplier distribution X(t) by backward integration of (33-2) subject 

to  the final conditions (35). 

(c) Compute the function B(t) using Eq. (33-3). 

(d) Determine the function A(t) by forward integration of (33-1) subject to the initial 

conditions (34). 

(e) Compute the values of P and Q using Eqs. (46) and (49) o r  the values of P and R 

using Eqs (66) and (69). 

(f) Determine the stepsize a using Eq. (58) with P = 1 o r  Eq. (71) with IJ = 1. 

(g) Compute the control change 6u(t) using Eq. (32-2). 

(h) Determine the new control G(t) using Eq. (8-2), obtain a consistent state Z(t) by 

forward integration of Eq. (2) subject to the initial conditions (3), and compute the 

functional using Eq. (1). 

(i) If Ineq. (7) is satisfied, the scaling factor p = 1 is acceptable. If Ineq. (7) is 

violated, the scaling factor u must be replaced by a smaller value; then, steps (f), (g), 

(h) must be repeated until Ineq. (7) is satisfied. The simplest way to generate smaller 

stepsizes is a bisection process: the value of u is successively halved until satisfaction of 

Ineq. (7) occurs. 
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(j) After a value of CI. ensuring satisfaction of Ineq. (7) has been determined, the 

iteration is completed. Then, the varied control G(t) becomes the nominal control u(t) 

for the next iteration, and the procedure is repeated until a predetermined stopping 

condition is satisfied. For instance, one can require the satisfaction of the inequality 

where P is the performance index defined by Eq. (45) and 8 is a small number. 



22 AAR-60 

8. Numerical Examples 

In order to  illustrate the theory, two numerical examples are supplied. These 

examples have been studied previously by Jacobson in Refs. 4-5. For simplicity, all the 

symbols employed in this section denote scalar quantities. 

Example 8.1. Consider the problem of minimizing the functional 

t 
f 2 2  2 

ti 

I = s (lox + u  )dt +loxf 

subject to the differential constraint 

1;+0.2x-  lOtanhu=O 

and the boundary conditions 

9 x = 5  i ti = o  

t ~ 0 . 5  , x =free 
f f 

(75) 

Assume the nominal control 

u(t) = -0.5 (79) 

Starting with this nominal control, we employ the algorithm summarized in Section 7 in 

order to obtain the solution iteratively. The search technique described in  Section 5 is used 

to find the optimum stepsize. The stopping condition (74) is employed with 8 = 10 -4 . 
Computations were performed on the Rice University Burroughs B-5500 computer i n  

double-precision arithmetic. The algorithm was programmed in extended ALGOL. The 
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interval of integration was divided into 64 steps. The differential system (33)-(35) was 

integrated using the Adams -Bashforth/Adams -Moulton four- step predictor-corrector 

method (Ref. 6). The definite integrals I, P, Q were computed using Simpson's rule. The 

numerical results are presented in  Figs. 1-2 and Table 1. Specifically, Fig. 1 shows the 

control history u(t) for different iterations N.  Also, Table 1 presents the functions I(N) 

and P(N),where I is the functional (1) and P the performance index (45). As the analysis 

shows, convergence is quite rapid, in that Ineq . (74) is satisfied after 10 iterations. Note 

that the first four significant figures of the functional (1) did not change after 6 iterations, 

even though the algorithm kept producing small changes in the control. 

Table 1 

The functions I(N) and P(N) 

N I P 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

123.44 

48.20 

41.82 

41.72 

41.62 

41 -60 

41.59 

41.59 

41.59 

41.59 

41.59 

6 

4 

1 

1 

0 

0 

0 

-2 

-2 

-3 

0.11 x 10 

0 . 1 4 ~  10 

0 . 7 3 ~  10 

0.29 x 10 

0 . 9 9 ~  10 

0.29 x 10 

0 . 1 3 ~  10 

0.68 x 10 

0 . 1 7 ~  10 

0.26 x 10 

0.74 low4 
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Example 8 . 2 .  Consider the problem of minimizing the functional 

t 
i 

subject to the differential constraints 

3 k - y = o  , ++x - 1 . 4 ~ + 0 . 1 4 ~  - 4 ~ ~ 0  

and the boundary conditions 

t i = 0 ,  x = - 5  , y. = - 5  i 1 

t = 2 . 5 ,  x = f r e e ,  y =free f f f 

Assume the nominal control 

AAR- 60 

Starting with this nominal control, we employ the algorithm summarized in Section 7 in  

order to obtain the solution iteratively. The search technique described in Section 5 is used 

to  find the optimum stepsize. The stopping condition (74) is employed with E = 10 -4 . 
Computations were performed on the Rice University Burroughs B-5500 computer in  

double-precision arithmetic. The algorithm was programmed in extended ALGOL. The 

interval of integration was divided into 320 steps.  The differential system (33)-(35) was 

integrated using the Adams -Bashforth/Adams -Moulton four- step predictor-corrector method 

(Ref. 6 ) .  The definite integrals I, P, Q were computed using Simpson's rule. The numerical 

results are presented in Figs. 3-5 and Table 2.  Specifically, Fig. 3 shows the control 

history u(t) and Figs. 4-5  show the state history x(t), y(t) for dlfferent iterations N. 
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Also, Table 2 presents the functions I(N) and P(N), where I is the functional (1) and P 

the performance index (45). As the analysis shows, convergence is quite rapid, in that 

Ineq. (74) is satisfied after 15 iterations. Note that the first four significant figures of the 

functional (1) did not change after 9 iterations, even though the algorithm kept producing 

small changes in the control. 

Table 2 

The functions I(N) and P(N) 

N I P 

8 

9 

10 

11 

12 

13 

14 

15 

98.74 

45.55 

33.01 

30.27 

29.66 

29.47 

29.41 

29.38 

29.38 

29.37 

29.37 

29.37 

29.37 

29.37 

29.37 

29.37 

4 
0.46 x 10 

0.30 x 10 3 

2 
0 . 1 5 ~  10 

1 

1 

0 

0.63 x 10 

0.23 x 10 

0.61 x 10 

0 0.27 x 10 

0.88 x lo-' 

0 . 3 7 ~  10-1 

0.12 x 10-1 

0.53 x 

0.19 x 

0.81 x 
0.31 

0.12 

0.50 
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9. Discussion and Conclusions 

An analytical approach to the gradient method is presented within the framework of 

the Bolza problem of the calculus of variations. The first variation is minimized subject 

to the linearized differential constraint and an isoperimetric constraint on the control 

variation. Since the resulting Euler equations a re  linear, the differential system describing 

the optimum corrections is linear. The properties of this system a r e  studied, and the 

solutions a re  related to the stepsize a .  

Two search techniques are presented: (a) the optimum stepsize is obtained by mini- 

mizing the functional (1) expanded to second order or  (b) the optimum stepsize is obtained 

by minimizing the augmented functional (59) expanded to second order. Technique (a) 

requires the second derivatives of the functions f and g, but not the second derivatives of 

the function cp; technique (b) requires the use of all the second derivatives. This being 

the case, procedure (a) requires less time per iteration than procedure (b) and, for that 

reason, has been employed in this paper. However, i f  the functional (1) is linear in x 

and u, procedure (a) fails to produce an optimum stepsize and, therefore, cannot be employed 
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